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processes. Within the path integral framework the same technique allows one to obtain
remarkably good approximations of the pricing kernels of financial derivatives. Several
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1. Introduction

Continuous-time diffusion processes are at the basis of much of the modeling work
performed every day in Finance and Economics. Indeed, since Bachelier’s pioneering
work on the application of probability theory to the dynamics of stock prices [5],
many economic variables subject to unpredictable fluctuations, have been modeled
by stochastic differential equations of the form

dYt = µy(Yt)dt + σy(Yt)dWt. (1.1)

Here µy(y) is the drift, describing a deterministic trend, and σy(y) ≥ 0 is the
volatility function, describing the level of randomness introduced by the Wiener
process (i.e., white noise), dWt. The main reason for the popularity of this class of
models is probably that in continuous time one can perform analytic calculations
using the instruments of stochastic calculus, and the powerful framework of partial
differential equations. In particular, for the few cases for which the process (1.1) is
exactly solvable, one can derive closed-form solutions for the associated transition
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probability. The latter contains all the statistical properties of the financial quantity
modeled by the diffusion, and can be exploited in a variety of ways, including
the derivation of no-arbitrage prices for financial derivatives in complete markets.
The milestone results derived by Black and Scholes and Merton [7, 21], Cox et al.
[10], or Vasicek [27], are among the most significant examples of the amount of
progress in Economics that has been done using integrable continuous-time diffusion
processes.

Nonetheless, an accurate description of the market observables requires in gen-
eral more sophisticated models than those for which an analytic solution is available.
These are usually tackled by means of numerical schemes ultimately relying on a
discretization of the diffusion, obtained by replacing the infinitesimal time dt with
a finite time step, ∆t. The approximate results obtained in this way become exact
only approaching the limit ∆t → 0, and this can be done with some computational
effort.

In this paper, we utilize the exponent expansion — a technique introduced in
chemical physics by Makri and Miller [18] — to derive a short-time approximation
of the transition probability of the diffusion process (1.1). The aim is to obtain
an analytic approximation which is as accurate as possible for a time step ∆t as
large as possible. On one hand, this allows one to derive approximations of financial
quantities that are very accurate even for sizable values of the time step. On the
other, it allows a reduction of the computational burden of numerical schemes as
the limit ∆t → 0 can be achieved with larger time steps, i.e., with less calculations.

The possibility to use Makri and Miller’s technique to derive approxima-
tions of the transition probability was originally hinted by Bennati et al. in
[6, 24]. Here we explore this possibility, giving derivations for a generic diffu-
sion process with state-dependent drift and volatility, and we study the relia-
bility of the exponent expansion by applying it to several test cases of financial
interest.

Through the exponent expansion, the transition probability is obtained as a
power series in ∆t which becomes asymptotically exact if an increasing number
of terms is included, and provides remarkably accurate results even when trun-
cated to the first few (say, n = 3) terms. Two derivations are offered, the first by
means of Kolmogorov’s forward equation [26] (Sec. 2), and the second introducing
a slightly different formalism (Sec. 2.1). The latter, once the problem is formu-
lated in terms of Feynman’s path integrals [14, 15], allows the generalization of the
exponent expansion to the calculation of the pricing kernel of financial derivatives
whose underlying follows the considered diffusion. This allows in turn the deriva-
tion of simple approximations for the price of such contingent claims (Sec. 3). In
Secs. 2.2 and 3.1.2, we illustrate the exponent expansion through the application to
the Vasicek, the Cox-Ingersoll-Ross, and the Constant Elasticity of Variance mod-
els, and in Sec. 4 we discuss its application to Monte Carlo calculations within the
path integral framework [3, 8, 12, 20, 23]. Finally, we draw our conclusions and we
discuss further possible developments in Sec. 5.
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2. Exponent Expansion and Transition Probabilities of
Diffusion Processes

In this section, we derive the exponent expansion for the transition probability,
ρy(y, ∆t|y0), giving the likelihood that the random walker following the process
(1.1) ends up in the position y at time t = ∆t, given that it was in y0 at time
t = 0. Although the derivation can be generalized to the case where drift and
volatility have an explicit time dependence, here for simplicity we will restrict the
discussion to the time homogeneous case. In order to make the derivation easier,
it is convenient to transform the original process in an auxiliary one, say Xt, with
constant volatility σx. Following Aı̈t-Sahalia [2], this can be achieved in general
through the following integral transformations

Xt = γ(Yt) ≡ ±σx

∫ Yt dz

σy(z)
, (2.1)

where the choice of the sign is just a matter of convenience depending on the specific
problem considered. The latter relation defines a one to one mapping between the
x and y processes as the condition σy(z) ≥ 0 ensures that the function x = γ(y)
defined by (2.1) is monotonic, and therefore invertible.1 A straightforward appli-
cation of Ito’s Lemma [26] allows one to write the diffusion process followed by
Xt as

dXt = µx(Xt)dt + σxdWt, (2.2)

with

µx(x) = ±σx

[
µy(γ−1(x))
σy(γ−1(x))

− 1
2

∂σy

∂y
(γ−1(x))

]
, (2.3)

where y = γ−1(x) is the inverse of the transformation (2.1). Finally, the transition
probability for the x and y processes are simply related by the Jacobian associated
with (2.1) giving

ρy(y, ∆t|y0) = σx
ρx(γ(y), ∆t|x0)

σy(y)
. (2.4)

In order to find an expression for the transition probability associated with
Eq. (2.2) which is accurate for a time ∆t as long as possible, we make the following
ansatz:

ρx(x, ∆t|x0) =
1√

2πσ2
x∆t

exp
[
− (x − x0)2

2σ2
x∆t

− W (x, x0, ∆t)
]
. (2.5)

Such transition probability must satisfy the Kolmogorov forward (or Fokker-
Planck) equation [26]:

∂tρ(x, ∆t|x0) =
[
−∂xµx(x) +

1
2
σ2

x∂2
x

]
ρx(x, ∆t|x0). (2.6)

1For a discussion of the regularity conditions on the drift and volatility functions see e.g., [2].
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This implies in turn that W (x, x0, t) follows the equation:

∂tW = −µx∂xW +
1
2
σ2

x∂2
xW − 1

2
σ2

x (∂xW )2 + ∂xµx − x − x0

∆t

(
∂xW +

µx

σ2
x

)
.

(2.7)

Expanding the function W (x, x0, t) in powers of ∆t,

W (x, x0, ∆t) =
∞∑

n=0

Wn(x, x0)∆tn, (2.8)

substituting it in Eq. (2.7), and equating equal powers of ∆t leads in a straightfor-
ward way to a decoupled equation for the order zero in ∆t giving

W0(x, x0) = − 1
σ2

x

∫ x

x0

dz µx(z), (2.9)

and to the following set of recursive differential equations:

(n + 1)Wn+1 = −(x − x0)∂xWn+1 +
[
1
2

σ2
x∂2

x − µx∂x

]
Wn

− 1
2
σ2

x

m=n∑
m=0

∂xWm∂xWn−m + δn,0∂xµx. (2.10)

In particular, for n = 0, 1, 2 Eqs. (2.10) read:

W1(x, x0) = −(x − x0) ∂xW1(x, x0) +
[

1
2σ2

x

µx(x)2 +
1
2
∂xµx(x)

]
, (2.11)

2W2(x, x0) = −(x − x0) ∂xW2(x, x0) +
1
2
σ2

x ∂2
xW1(x, x0), (2.12)

3W3(x, x0) = −(x − x0) ∂xW3(x, x0) +
1
2
σ2

x∂2
xW2(x, x0),

− 1
2
σ2

x(∂xW1(x, x0))2. (2.13)

The differential equations above (2.10) are all first order, linear and inhomogeneous
of the form

nWn(x, x0) = −(x − x0)∂xWn(x, x0) + Λn−1(x, x0), (2.14)

where Λn−1(x, x0) is a function that is completely determined by the first n − 1
relations. It can be readily verified by substitution and integration by parts that
the solution of (2.14) reads

Wn(x, x0) =
∫ 1

0

dξξn−1Λn−1(x0 + (x − x0)ξ, x0). (2.15)
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This, for n = 1, 2, 3, after some manipulations, gives:

W1(x, x0) =
1

∆x

∫ x

x0

dzVeff(z), (2.16)

W2(x, x0) =
σ2

x

2∆x2
[Veff(x) + Veff(x0) − 2W1(x, x0)] , (2.17)

W3(x, x0) = − σ2
x

2∆x4

[
∆x

∫ x

x0

dzVeff(z)2 −
(∫ x

x0

dzVeff(z)
)2
]

− 3σ2
x

∆x2
W2(x, x0) +

σ4
x

4∆x3
[∂xVeff(x) − ∂xVeff(x0)] , (2.18)

where ∆x = x−x0, and, for reasons that will be clearer in the next section, we have
also introduced the “effective potential” as the following quantity with dimension
time−1:

Veff(x) =
1

2σ2
x

µx(x)2 +
1
2
∂xµx(x). (2.19)

At this time, we just note that the first order correction can be rewritten as

W1(x, x0) =
1

∆t

∫ ∆t

0

dt Veff(x0 + t∆x/∆t), (2.20)

leading to the interpretation of this term as a time-average of the effective potential
over the straight line, constant velocity (∆x/∆t) trajectory between x0 and x.
Similarly, the leading term in W3(x, x0) (i.e., the one proportional to the lowest
power of the volatility) is proportional to the variance of the effective potential over
the same trajectory. Finally, we observe that the corrections Wn(x, x0) are well
defined in the limit ∆x → 0. In particular, for n = 1, 2, 3 it is not difficult to show
that

lim
x→x0

W1(x, x0) = Veff(x0), (2.21)

lim
x→x0

W2(x, x0) =
σ2

x

12
∂2

xVeff(x), (2.22)

lim
x→x0

W3(x, x0) = −σ2
x

24
(∂xVeff(x))2 +

σ4
x

240
∂4

xVeff(x). (2.23)

The form of the trial transition probability represents the main difference of the
present approach to the one proposed in [2], which is otherwise very similar in spirit.
In fact, the latter expands in powers of ∆t the exponential exp [−W (x, x0, ∆t)]
rather then just the exponent, as we do here, instead. As it will be shown explicitly
in the following, the present choice gives rise to a distinct approximation scheme
for n > 0 providing generally a similar level of accuracy but remarkably simpler
mathematical expressions. This is because, by keeping the exponential form of the
ansatz, one formulates a guess which is closer to the exact one. The latter, can be
expected to have an exponential form in order to satisfy the Chapman-Kolmogorov
property of Markov processes [26]. In addition, the exponential choice of the ansatz
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automatically enforces the positive definiteness of the transition density which is
not granted in the approach of [2]. In fact, as it will be shown explicitly in Sec. 2.2,
in the limit of very small volatility (σx → 0), when the effect of the noise disappears
and the transition density converges to a Dirac’s δ distribution, the expansion of [2]
breaks down as the transition probability becomes negative. On the contrary, the
exponent expansion remains well defined and accurate also in this limit. Indeed,
the first terms of the expansion in ∆t can be also derived through a small volatility
expansion of the transition density, as it will be discussed in Sec. 3.1.

Similarly to the expansion developed in [2] the exponent expansion has in general
a finite convergence radius which is a decreasing function of the volatility. As it
will be shown in the following, for the values of volatilities and ∆t relevant for
financial applications the exponent expansion turns out to be very accurate even
when truncated to the first few terms.

2.1. Alternative derivation

The term W0(x, x0) in the exponent expansion is somewhat different from the higher
order terms. In fact, it is defined by Eq. (2.9) which is decoupled from the recursive
system (2.10). Indeed, it is possible to obtain the same result for the exponent
expansion by expressing the transition density as

ρx(x, ∆t|x0) = e−W0(x,x0)Φρx(x, ∆t|x0), (2.24)

and looking for an approximate expansion of the form (2.5) for Φρx(x, ∆t|x0). It is
easy to show by direct substitution in the forward Kolmogorov equation (2.6) that
Φρx(x, ∆t|x0) is the solution of

Hx Φρx(x, ∆t|x0) = −∂tΦρx(x, ∆t|x0), (2.25)

where Hx is the “Hamiltonian” differential operator

Hx = −σ2
x

2
∂2

x + Veff(x), (2.26)

and Veff(x) is the effective potential of Eq. (2.19). As a result one can equiva-
lently derive the exponent expansion by substituting in Eq. (2.25) the following
trial function

Φρx(x, ∆t|x0) =
1√

2πσ2
x∆t

exp

[
− (x − x0)2

2σ2
x∆t

−
∞∑

n=1

Wn(x, x0)∆tn

]
, (2.27)

which does not contain the term W0(x, x0). This observation will be used in Sec. 3
to generalize the exponent expansion to the pricing kernel of financial derivatives.

2.2. Applications

The application of the exponent expansion to a generic diffusion process of the form
(1.1) is rather straightforward and reduces to the calculation of one dimensional
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integrals. In this section, we illustrate this procedure for a few test cases, namely for
the Vasicek [27], the Cox-Ingersoll-Ross [10], and the Constant Elasticity of Variance
[11] diffusion processes. We will compare the results of the exponent expansion with
the exact results available in literature, and with the approach of [2].

2.2.1. Vasicek diffusion

We first consider the Ornstein-Uhlenbeck diffusion proposed by Vasicek [27] as a
model for the short-term interest rate:

dXt = a(b − Xt)dt + σdWt, (2.28)

where a, b, and σ are positive constants representing the mean-reversion level, the
velocity to mean reversion, and the volatility, respectively. This model is integrable
and the corresponding probability density function is Gaussian:

ρex(x, ∆t|x0) =
1

(2πσ̄2)1/2
exp
[
− [(x0 − a)e−a∆t − (x − a)]2

2σ̄2

]
, (2.29)

with

σ̄ = σ

√
1 − e−2a∆t

2a
. (2.30)

The exponent expansion of the Vasicek model can be easily derived using
Eqs. (2.9), and (2.16)–(2.18) with the effective potential, Eq. (2.19),

Veff(x) =
a2(b − x)2

2σ2
− a

2
, (2.31)

and gives,

ρx(x, ∆t|x0) =
1√

2πσ2∆t
exp
[
− (x − x0)2

2σ2∆t
− W0(x, x0)

−W1(x, x0)∆t − W2(x, x0)∆t2 − W3(x, x0)∆t3
]
, (2.32)

up to the third order in ∆t (n = 3). Here

W0(x, x0) =
a(x − b)2 − a(x0 − b)2

2σ2
, (2.33)

W1(x, x0) =
a2

6σ2
((x − b)2 + (x0 − b)2 + (x − b)(x0 − b)) − a

2
, (2.34)

W2(x, x0) =
σ2

2∆x2

[
Veff(x) + Veff(x0) − 2W1(x, x0)

]
, (2.35)

W3(x, x0) = − σ2
x

2∆x3

[ a4

20σ4
[(x − b)5 − (x0 − b)5]

+
a2

4
∆x − a3

6σ2
[(x − b)3 − (x0 − b)3]

]
+

σ2
x

2∆x2
(W1(x, x0))2 − 3σ2

x

∆x2
W2(x, x0) +

a2σ2
x

4∆x2
, (2.36)
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with ∆x = x − x0. It is interesting to note that the approximate transition proba-
bility obtained with the present approach reproduces exactly the expansion of the
transition density Eq. (2.29) at the same order.

The fast convergence of the approximation scheme is illustrated in Fig. 1. Here
the percentage error of the exponent expansion with respect to the exact result
(2.29) is plotted for various ∆t, and compared with the approach of [2]. The parame-
ter choice, also taken from [2] corresponds to a sensible parameterization for interest

(b)

(a) (c)

Fig. 1. Accuracy of the exponent expansion for the transition density of the Vasicek model (2.28).
for a = 0.0717, b = 0.261 and x0 = 0.1. Panel (a): comparison between the exponent expansion

(stars) and the approximation of [2] (squares) for σ = 0.02237 and ∆t = 0.5. At order zero
the two schemes are identical. The uniform error of the Euler approximation is also reported
for comparison. Panel (b): maximum relative error for σ = 0.02237 as a function of ∆t: n = 0
(continuous), n = 1 (dotted), n = 2 (long dashed) and n = 3 (short dashed). The inset is an
enlargement of the 5–10 years region. Panel (c): comparison between the exponent expansion
(stars) and the approximation of [2] (squares) in the regime of low volatility (σ = 0.01), for
∆t = 0.5.
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rate markets. We adopt one year as unit of time, and we express the various param-
eters in this unit. The Euler approximation

ρE(x, ∆t|x0) =

√
1

2πσ2∆t
exp
(
− (x − x0 − µx(x0)∆t)2

2σ2
x∆t

)
, (2.37)

is also reported for comparison. The inclusion of each successive order allows one
to increase dramatically the accuracy of the approximation so that the third order
expansion has basically a negligible error even for a sizable time step of order 6
months. Remarkably, for the considered example, the third order expansion allows
one to estimate the 10 years transition probability with a relative error of less
than 10 basis points (Fig. 1b). As illustrated in Fig. 1a, in the present case the
approach of [2] provides a slightly poorer level of accuracy for n ≤ 2. In addition,
it generally produces more complicated mathematical expressions. Furthermore, as
shown in Fig. 1c, in the regime of small volatility the exponent expansion still
provides accurate results while the performance of the approach of [2] degrades.
In fact, as anticipated, in the limit of small volatility (σx � 0.5%) the first order
correction of the latter approach produces a negative transition probability signaling
a break down of the scheme.

2.2.2. Cox, Ingersoll and Ross diffusion

The Vasicek model is probably too easy of a test case as the associated transition
probability is Gaussian. In fact, since the exponent expansion has a leading term
which is Gaussian, the higher powers in ∆t just have to renormalize its average
and variance in order to reproduce the exact result. It is interesting therefore to
test the accuracy of the exponent expansion for a diffusion process that, while still
integrable, generates a non-normal transition density. This is the case for the Feller’s
square root process [13]

dYt = a(b − Yt) + σy

√
YtdWt (2.38)

which is the basis of Cox, Ingersoll and Ross model for the instantaneous interest
rate [10]. The exact transition probability is given by [10]

ρex(y, ∆t|y0) = ce−(u+v)
( v

u

) q
2

Iq(2
√

uv), (2.39)

where c = 2a/[σ2
y(1− exp(−a∆t))], q = 2ab/σ2

y − 1 ≥ 0, u = cy0 exp(−a∆t), v = cy

and Iq is the modified Bessel function of the first kind of order q [1].
As explained in Sec. 2, since the volatility is not uniform, it is convenient to

introduce the auxiliary process defined by Eq. (2.1), as Xt = γ(Yt) ≡ 2
√

Yt/σy. The
Xt process follows Eq. (2.2), with σx = 1 and

µx(x) =
q̃

x
− a

2
x, (2.40)
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and q̃ = q + 1/2. In this case the effective potential reads:

Veff(x) =
1
2
µx(x)2 − q̃

2x2
− a

4
, (2.41)

and the first four terms of the exponent expansion in Eq. (2.8) are:

W0(x, x0) = −q̃ log
x

x0
+

a

4
(x2 − x2

0) (2.42)

W1(x, x0) =
1

2∆x

[
µx(x) − µx(x0) − q̃2

(
1
x
− 1

x0

)

+
a2

12
(
x3 − x3

0

)− aq̃ (x − x0)
]

(2.43)

W2(x, x0) =
1

2∆x2

[
Veff(x) + Veff(x0) − 2W1(x, x0)

]
(2.44)

W3(x, x0) = − 1
2∆x2

[
G(x) − G(x0)

∆x
− (W1(x, x0))2

]

− 3
∆x2

W2(x, x0) +
1

4∆x3
[∂xVeff(x) − ∂xVeff(x0)] , (2.45)

where ∆x = x − x0, ∂xVeff(z) = q̃(1 − q̃)/z3 + a2z/4, and

G(z) =
1
5
α2z5 − 1

3
β2

z3
+ γ2z + 2αβz − 2

βγ

z
+

2
3
αγz3, (2.46)

and α = a2/8, β = q̃(q̃ − 1)/2, γ = −a(q̃ + 1)/2. Finally, going back to the original
process, with Eq. (2.4), the transition probability reads:

ρy(y, ∆t|y0) = ρx(2
√

y/σy, ∆t| 2√y0/σy)/σy
√

y. (2.47)

The accuracy of the exponent expansion in this case is illustrated in Fig. 2. Simi-
larly to the case of the Vasicek diffusion, the exponent expansion is characterized by
a remarkably fast convergence by including successive terms of the approximation
so that n = 3 provides already a virtually exact representation of the transition
density, for ∆t � 1 yrs. In this case, the approach of [2] performs slightly worse
of the exponent expansion for n = 1, and slightly better for n = 2. However, also
in this case the former breaks down for small values of the volatility, generating
unphysical transition densities.

2.2.3. Constant Elasticity of Variance diffusion

As a last example we consider the Constant Elasticity of Variance model:

dYt = a(b − Yt)dt + σyY p
t dWt. (2.48)

Here we consider for brevity only the case p > 1, and the transformation to a process
with constant (unit) variance is Xt = γ(Yt) = Y 1−p

t /σy(p− 1) and gives, according
to Eq. (2.3)

µx(x) =
c1

x
+ c2x + c3x

p
p−1 , (2.49)
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Fig. 2. Accuracy of the exponent expansion for the transition density of the Cox-Ingersoll-Ross
model (2.38), for a = 0.0721, b = 0.219, σ = 0.06665, and x0 = 0.06. Bottom: comparison between
the exponent expansion (stars) and the approximation of [2] (squares) for ∆t = 0.5. The uniform
error of the Euler approximation is also reported for comparison. Top: probability density function
for ∆t = 1.5 as a function of n: n = 0 (dotted), n = 1 (long dashed), n = 2 (short dashed), n = 3
(continuous), Euler (dot-long dashed), exact (crosses). The inset is an enlargement of the region
of the maximum. On this scale, the estimates for n = 2 and n = 3 still appear coincident.

with c1 = p/2(p−1), c2 = a(p−1), and c3 = −ab(p−1)p/(p−1)σ
1/(p−1)
y . In this case

the effective potential reads

Veff(x) =
1
2
µx(x)2 − c1

2x2
+

c2

2
+

p

2(p − 1)
c3x

1/(p−1), (2.50)

and the first three terms of the expansion are:

W0(x, x0) = c1 log
y0

yt
− a(p − 1)

2(2p − 1)

[
(2p − 1)(x2 − x2

0)

+ 2b(p− 1)
p

p−1 σ
1

p−1
y

(
x

2p−1
p−1 − x

2p−1
p−1

0

)]
, (2.51)
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W1(x, x0) =
1

2∆x
[F (x) − F (x0)], (2.52)

W2(x, x0) =
1

2∆x2

[
Veff(x) + Veff(x0) − 2W1(x, x0)

]
, (2.53)

with

F (z) = −c2
1

z
+

c2
2

3
z3 +

c2
3(p − 1)
3p − 1

z
3p−1
p−1

+ 2c1c2z +
2c1c3(p − 1)

p
z

p
p−1 +

2c2c3(p − 1)
3p − 2

z
3p−2
p−1 + µx(z) . (2.54)

Similarly to the examples considered previously, also for the Constant Elasticity
of Variance model we find a very fast convergence of the exponent expansion for
∆t � 1, and a performance generally similar to the one of the approach of [2], for
values of the volatility large enough.

3. Pricing Kernels for Contingent Claims

3.1. Path integral formulation

The exponent expansion can be generalized to obtain an approximation of the
pricing kernels of “standard” derivatives. This can be done by formulating the
pricing problem within Feynman’s path integral framework [6, 24]. Here we indicate
as “standard” any contingent claim written on the underlying, Yt, whose value at
time t = 0, V0, can be expressed as an expectation value of a functional of a certain
type, namely

V0(∆t, y0) = E[P (Y∆t)F [Yu]|y0], (3.1)

where

F [Yu] = exp
[
−
∫ ∆t

0

du VF [Yu]
]
, (3.2)

and P (Y∆t) is a payout function. Above ∆t is the time to expiry, and the expectation
value is performed with respect to the probability measure defined by the diffusion
for Yt that we assume of the form (1.1). European Vanilla options, zero coupon
bonds, caplets, and floorets clearly belong to this family of contingent claims. In
addition, other path-dependent derivatives, like barrier or Asian options can be
expressed in this form (see, e.g., [4, 17]).

Similarly to the case of the transition probability, it is in general convenient to
introduce an auxiliary diffusion with constant volatility of the form (2.2) by means
of the integral transformations (2.1). Then, the expectation value in (3.1) can be
transformed in an integral over the distribution generated by such auxiliary diffusion
by means of the usual Jacobian transformation (2.4). As a result, the value of the
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option can be in general written as:

V0(∆t, x0) = E[P (X∆t)F [Xu]|x0] =
∫

D

dxP (x)K(x, ∆t|x0). (3.3)

where D is the domain of the auxiliary process as defined by the relative stochastic
differential equation (2.2), and K(x, ∆t|x0) is the pricing kernel. The latter can be
expressed in terms of a path integral as it follows [6, 24]

K(x, ∆t|x0) = e−W0(x,x0)Φ(x, ∆t|x0), (3.4)

with

Φ(x, ∆t|x0) =
∫ x(∆t)=x

x(0)=x0

D[x(u)] exp
[
−
∫ ∆t

0

du Leff [x(u), ẋ(u)]
]
. (3.5)

where W0 is given by Eq. (2.9) and the functional Leff [x(u), ẋ(u)] is the effective
Euclidean Lagrangian

Leff [x(u), ẋ(u)] =
1

2σ2
x

ẋ(u)2 + Veff(x), (3.6)

(ẋ(u) ≡ dx(u)/du) with the effective potential, Veff(x), defined as:

Veff(x) =
1

2σ2
x

µx(x)2 +
1
2
∂xµx(x) + VF (x). (3.7)

Finally, the measure D[x(u)] is defined by discretizing each path x(u) connecting
x(0) = x0 and x(T ) = x. This can be done by dividing the time interval [0, T ] into
P intervals so that xn = x(un) (un = nT/P with n = 0, . . . , P ), and by integrating
the internal P − 1 variables xn over the domain D. The path integral

∫ D[x(u)] is
then obtained as the limit for P → ∞ of this procedure, namely∫

D[x(u)] ≡ lim
P→∞

(2πσ2
x∆t)−P/2

P−1∏
n=1

∫
D

dxn. (3.8)

It is well known form the physical sciences that the path integral Φ(x, ∆t|r0)
satisfies the partial differential equation Eq. (2.25) [14, 15]. Note that this is con-
sistent with the fact that, by definition, for VF (x) ≡ 0 the pricing kernel coincides
with the transition density of the underlying diffusion process for Xt. In particu-
lar, as observed in Sec. 2.1, one can use Eq. (2.25) to derive the exponent expan-
sion for Φ(x, ∆x|r0) using the trial form (2.27). As a result, the same expressions
Eqs. (2.16)–(2.18) derived for the transition density hold true also for the pricing
kernel, provided that the effective potential (3.7) replaces the one in Eq. (2.19).

3.1.1. Correspondence with quantum mechanics

It is interesting to note that the path integral formulation of the pricing kernel (3.5)
is mathematically equivalent to the quantum mechanical description of the thermo-
dynamic properties of an ideal gas of particles moving in the potential �Veff(x)
(� is the reduced Planck’s constant giving the correct energy dimensions). The
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complete correspondence is obtained by identifying σ2
x → �/m and ∆t → �/kBT

where m is the mass of the particle, T is the temperature, and kB is the Boltzmann
constant. With this prescription, Φ(x, ∆t|x0) becomes the so-called single parti-
cle density matrix, and the results of Makri and Miller [18] can be readily recov-
ered. In addition, it is straightforward to show using Eqs. (2.23) that the exponent
expansion of its diagonal elements, Φ(x0, ∆t|x0), are consistent with the so called
Wigner expansion for the high-temperature limit. Finally, performing the analytic
continuation known as Wick rotation ∆t → i�t allows one to obtain the single-
particle quantum propagator. In this case (2.25) becomes the celebrated Schrödinger
equation.

This correspondence provides an alternative justification of the choice of the
exponential ansatz in Eq. (2.5). Indeed, this is the form in which can be expressed
in general the quantum mechanical propagator or the single particle density matrix
[14, 15]. Furthermore, it has been shown for the quantum problem [19] that the
exponent expansion up to third order in ∆t and first order in �/m can be derived
starting from the short time semiclassical propagator [25] obtained through a saddle
point analysis of the limit �/m → 0. Indeed, it can be shown that the second order
correction W2(x, x0), Eq. (2.17), is the so-called van-Vleck determinant of the saddle
point expansion. This explains why the accuracy of the present scheme is preserved
in the corresponding regime of low volatility, as it was anticipated in Sec. 2, and
illustrated in Sec. 2.2.

3.1.2. An example: Zero coupon bond

In this section we illustrate the prescriptions outlined above by applying the expo-
nent expansion to the calculation of a zero coupon bond within the Vasicek and
Cox-Ingersoll-Ross models. The zero coupon bond is a financial instrument that
provides at time t = ∆t a payout of one unit of a certain notional. Its value at time
t = 0 can be expressed therefore as

P (0, ∆t) = E

[
exp−

∫ ∆t

0

du Xu

∣∣∣r0

]
, (3.9)

which is of the standard form given by Eqs. (3.1) and (3.2), with VF [Xu] = Xu,
and P [X∆t] ≡ 1.

As a result, the exponent expansion for the kernel Eq. (3.4) can be easily derived
giving for the Vasicek model

W1(x, x0) = W 0
1 (x, x0) +

x + x0

2
, (3.10)

W2(x, x0) = W 0
2 (x, x0), (3.11)

W3(x, x0) = W 0
3 (x, x0) − σ2

x + 2a2(x − b)
24

, (3.12)

where W 0
i (x, x0) are the expressions obtained for the transition probabil-

ity Eqs. (2.33)–(2.36) of Sec. 2.2.1. For the Cox-Ingersoll-Ross model instead
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we get:

W1(x, x0) = W 0
1 (x, x0) +

σ2

12
(x2 + x2

0 + xx0), (3.13)

W2(x, x0) = W 0
2 (x, x0) − σ2

24
, (3.14)

with W 0
i (x, x0) given by Eqs. (2.42)–(2.44), and W 0

3 (x, x0) related to the previous
quantities as in Eq. (2.45) with

G(z) = G0(z) +
σ2

y

2

[(
α +

σ2
y

8

)
z5

5
+

γ

3
z3 + βz

]
, (3.15)

G0(z) as in Eq. (2.46), and ∂zVeff(z) = ∂zV
0
eff(z) + σ2

yz/2. The exponent expansion
for the pricing kernel can be compared with the exact results that can be shown to
read for the Vasicek model (2.28)

Kex(x, ∆t|, x0) =
exp
[
(x − x0)/a − ∆t(b − σ2/2a2)

]
(2πσ̄2)1/2

× exp

[
−
[(

x0 − b + σ2/a2
)
e−a∆t − (y − b + σ2/a2)

]2
2σ̄2

]
,

(3.16)

with σ̄ given by Eq. (2.30), and

Kex(x, ∆t|, x0) =
2
x

exp

[
−a

4 (x2 − x2
0) + (2ab − σ2

2 ) log x
x0

σ2

]
γ
√

xx0 ea2b∆t/σ2

2σ2 sinh [γ∆t/2]

× exp
[
− γ

4σ2
(x2 + x2

0) coth [γ∆t/2]
]
Iq

(
xx0γ

2σ2 sinh [γ∆t/2]

)
,

(3.17)

with γ =
√

a2 + 2σ2, for the Cox-Ingersoll-Ross one. As illustrated in Fig. 3, sim-
ilarly to the case of the transition probability, the exponent expansion provides a
remarkably good, and fast converging approximation of the exact pricing kernel for
financially sensible parametrizations, and for a sizable value of the time step ∆t.

Finally, the zero coupon bond can be obtained by numerical integration of the
pricing kernel according to Eq. (3.3). The corresponding results are shown in Fig. 4
confirming once more the quality of the approximation. In a similar fashion, one
can obtain systematic approximations for caplets, floorets, and other simple interest
rate derivatives whose value depends only on the value of the instantaneous short
rate at time t = ∆t. It is also possible to generalize this approach to path dependent
contingent claims, like Asian options.

4. Extending the Time-Step: Path Integral Monte Carlo Methods

For an extended time interval T , the calculation of the transition density or, more in
general, of the pricing kernel (3.4) can be performed by discretizing the path integral
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Fig. 3. Accuracy of the exponent expansion for the pricing kernel Eq. (3.4) of the Vasicek model
(2.28), for a = 0.0717, b = 0.261, and x0 = 0.1. Symbols as in Fig. 2. The inset shows the maximum
absolute error as a function of the order of the expansion n.

Fig. 4. Zero coupon bond for the Cox-Ingersoll-Ross model. Parameters and symbols as in Fig. 2.
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(3.5), and taking the limit of large number of time slices (P → ∞) according to the
standard Trotter product formula:

K(x, ∆t|x0) � (2πσ2
x∆t)−P/2e−W0(x,x0)

P−1∏
n=1

∫
D

dxn

× exp

[
− 1

2σ2
x∆t

k=P∑
k=1

(xk − xk−1)2 − ∆t

2

k=P∑
k=1

(Veff(xk) + Veff(xk−1))

]
,

(4.1)

with ∆t = T/P , xP = x, and the effective potential given by Eq. (3.7). It is
worth remarking that, for the case of the transition density, by interpreting the
latter equation as the Chapman-Kolmogorov property of Markov processes [26] one
obtains the following approximation of the short-time propagator

KTrotter(x, ∆t|x0) =
e−W0(x,x0)√

2πσ2
x∆t

exp
[
− (x − x0)2

2σ2
x∆t

− ∆t

2

(
Veff(x) + Veff(x0)

)]
.

(4.2)

However, in contrast to the n = 1 exponent expansion, the latter expression is not
strictly correct up to order ∆t, and only in the limit P → ∞ the difference becomes
negligible.

In general, to obtain an accurate result for the pricing kernel for an extended time
period T one has to increase the number of time slices, or Trotter number P , until
convergence is achieved. By replacing the Trotter formula with the improved short-
time kernel obtained through the exponent expansion (2.5) one achieves a faster
convergence with the Trotter number, thus significantly reducing the computational
burden. In this case the finite-time expression of the pricing kernel reads

K(x, T |x0) � (2πσ2
x∆t)−P/2

P−1∏
n=1

∫
D

dxn

× exp

[
− 1

2σ2
x∆t

P∑
k=1

(xk − xk−1)2 −
P∑

k=1

W (xk, xk−1, ∆t)

]
, (4.3)

with W (x, x0, ∆t) given by Eq. (2.8).
Equation (4.3) allows one to obtain the transition density or the pricing kernel

for a standard derivative through the calculation of a multidimensional integral over
the variables x1, . . . , xP−1. The latter integration is ideally suited for Monte Carlo
methods either in real, or in Fourier space [9], the specific choice depending on
the particular problem at hand. In addition, importance-sampling schemes, e.g., by
means of the Metropolis algorithm [22], can be easily applied in order to reduce the
computation time. However, in order not to introduce a systematic bias in the result
a particular attention has to be paid in order to sample accurately the configuration
space.
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The most straightforward way to perform a Monte Carlo quadrature of Eq. (4.3),
is to realize that a simple Markov chain x = (x1, . . . , xP−1)

xn = xn−1 + σx

√
∆t Zn, (4.4)

with Zn, sampled from a standard normal distribution, generates an ensemble of
walkers distributed according to

ρ(x1, . . . , xP−1|x0) = (2πσ2
x∆t)−(P−1)/2 exp

[
− 1

2σ2
x∆t

P−1∑
k=1

(xk − xk−1)2
]
. (4.5)

As a result, the pricing kernel (4.3) can be obtained as the average over the random
paths generated according to Eq. (4.4) of the following estimator:

O(x, xP = x) = (2πσ2
x∆t)−1/2 exp

[
− 1

2σ2
x∆t

(x − xP−1)2 −
P∑

k=1

W (xk, xk−1)

]
.

(4.6)

A remarkable property of the path integral approach is that K(x, ∆t|x0) for any
final point x can be evaluated with a single Monte Carlo simulation by appropri-
ately reweighting the accumulated estimator. In fact the distribution of walkers
p(x1, . . . , xP−1|x0) is independent of the final point xP so that K(x′, ∆t|x0) can
be calculated by averaging O(x, xP = x′). In addition, the latter quantity can be
efficiently obtained by means of the following reweighting procedure

O(x, xP = x′) = O(x, xP = x)
W(x′,x)
W(x,x)

, (4.7)

with

W(x,x) = exp
[
− 1

2σ2
x∆t

(x − xP−1)2 − W (x, xP−1)
]
. (4.8)

Expectation values of the form (3.3) on a time horizon T can be calculated by
integrating over the final variable giving:

V0(T, x0) =
∫

D

dxP (x)K(x, T |x0) � (2πσ2
x∆t)−P/2

P∏
n=1

∫
D

dxnP (xP )

× exp

[
− 1

2σ2
x∆t

P∑
k=1

(xk − xk−1)2 −
P∑

k=1

W (xk, xk−1)

]
. (4.9)

This can be simulated by extending the Markov chain (4.4) up to step x = xP , and
accumulating the estimator

P(x, xP = x′) = P (x) exp

[
−

P∑
k=1

W (xk, xk−1)

]
. (4.10)

Remarkably, within the path integral approach, the sensitivities of such expectation
values with respect to the model parameters (the so-called Greeks) can be computed
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in the same Monte Carlo simulation, thus avoiding any numerical differentiation.
Indeed, indicating with θ a generic parameter, under quite general conditions [16],
one has

∂θV0(T, x0, θ) =
∫

D

dx [Kθ(x, T |x0)∂θP (x, θ) + P (x, θ)∂θKθ(x, T |x0)] . (4.11)

As a result the sensitivity ∂θV0(T, x0, θ) can be calculated by means of the estimator:

G(x, xP = x′) = exp

[
−

P∑
k=1

W (xk, xk−1)

]
(∂θP + P∂θ log Kθ) . (4.12)

Higher order sensitivities can be obtained in a similar fashion.
The convergence with the Trotter number P of the path integral Monte Carlo

estimates is illustrated in Fig. 5 for the calculation of the first five moments of the
T = 40 yrs transition probability of the Cox-Ingersoll-Ross model (2.38). The finite
P estimates converge very rapidly with 1/P . In particular, for the case considered,

Fig. 5. Convergence with the Trotter number P of the normalization, and of the first 4 moments of
the 40 years transition density for the Cox–Ingersoll–Ross model. Parameters as in Fig. 2. In the
first top panels the relative error with respect to the exact result is reported. Lines are quadratic
fits.
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P = 20 already provides estimates in agreement with the exact result within statis-
tical uncertainties. In general, as also shown in the figure, a convenient indicator of
the convergence is the zeroth-moment or normalization of the distribution. The cal-
culation of this quantity allows in general to assess the level of convergence without
performing a complete scaling with P , thus saving computational time.

5. Conclusions

The exponent expansion is an approximation of the quantum mechanical propagator
known in physical chemistry [18, 19]. We have generalized this approach to produce
closed-form approximation of the transition probability of arbitrary non linear pro-
cesses, and we have shown that it produces very accurate results for integrable
diffusions of financial interest, like the Vasicek and the Cox-Ingersoll-Ross models.
In contrast to previously developed approximation schemes that share a similar
rationale [2], the exponent expansion always generates positive definite transition
probabilities, and remains stable also in the limit of low volatility.

By introducing a path integral framework we have generalized the exponent
expansion to the calculation of pricing kernels of financial derivatives, and we have
shown how to obtain accurate approximations for the price of simple contingent
claims. We have also shown how the exponent expansion can be naturally used to
increase the efficiency of path integral Monte Carlo simulations. The latter allow
one to extend the calculations to arbitrarily large time steps, and to efficiently
calculate the Greeks of contingent claims, avoiding any numerical differentiation. A
systematic study of the efficiency of this approach for the pricing of exotic derivatives
will be the object of future investigations.

The exponent expansion can be generalized to multifactor diffusion processes,
and to time dependent drift and volatility functions. This would allow one to
increase the efficiency of numerical simulations of a larger family of diffusion pro-
cesses relevant for Financial applications, including local volatility or LIBOR Market
Models. Work is currently in progress along this line of research.
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